Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
On Cluster Extraction from Relational Data Using L1-Regularized Possibilistic Assignment Prototype Algorithm
Yukihiro HamasunaYasunori Endo
Author information
JOURNAL OPEN ACCESS

2015 Volume 19 Issue 1 Pages 23-28

Details
Abstract

This paper proposes entropy-based L1-regularized possibilistic clustering and a method of sequential cluster extraction from relational data. Sequential cluster extraction means that the algorithm extracts cluster one by one. The assignment prototype algorithm is a typical clustering method for relational data. The membership degree of each object to each cluster is calculated directly from dissimilarities between objects. An entropy-based L1-regularized possibilistic assignment prototype algorithm is proposed first to induce belongingness for a membership grade. An algorithm of sequential cluster extraction based on the proposed method is constructed and the effectiveness of the proposed methods is shown through numerical examples.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2015 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
Previous article Next article
feedback
Top