Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Neural Network Structure Analysis Based on Hierarchical Force-Directed Graph Drawing for Multi-Task Learning
Atsushi ShibataFangyan DongKaoru Hirota
Author information
JOURNAL OPEN ACCESS

2015 Volume 19 Issue 2 Pages 225-231

Details
Abstract

A hierarchical force-directed graph drawing is proposed for the analysis of a neural network structure that expresses the relationship between multitask and processes in neural networks represented as neuron clusters. The process revealed by our proposal indicates the neurons that are related to each task and the number of neurons or learning epochs that are sufficient. Our proposal is evaluated by visualizing neural networks learned on the Mixed National Institute of Standards and Technology (MNIST) database of handwritten digits, and the results show that inactive neurons, namely those that do not have a close relationship with any tasks, are located on the periphery part of the visualized network, and that cutting half of the training data on one specific task (out of ten) causes a 15% increase in the variance of neurons in clusters that react to the specific task compared to the reaction to all tasks. The proposal aims to be developed in order to support the design process of neural networks that consider multitasking of different categories, for example, one neural network for both the vision and motion system of a robot.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2015 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
Previous article Next article
feedback
Top