Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Wavelet Lp-Norm Support Vector Regression with Feature Selection
Ya-Fen YeYuan-Hai ShaoChun-Na Li
Author information
JOURNAL OPEN ACCESS

2015 Volume 19 Issue 3 Pages 407-416

Details
Abstract

This paper proposes wavelet Lp-norm support vector regression (Lp-WSVR) to solve feature selection and regression problems effectively. Unlike conventional support vector regression (SVR), linear Lp-WSVR ensures that useful features are selected based on theoretical analysis. By using the wavelet kernel, Lp-WSVR approaches any curve in quadratic continuous integral space that leads to improving regression performance. Results of experiments show the superiority of Lp-WSVR in both feature selection and regression performances. Applying Lp-WSVR to Chinese real estate prices shows that the most significant and powerful factor contributing to Chinese housing prices is monetary growth.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2015 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
Previous article Next article
feedback
Top