Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Fuzzy c-Means with Quadratic Penalty-Vector Regularization Using Kullback-Leibler Information for Uncertain Data
Naohiko KinoshitaYasunori EndoYukihiro Hamasuna
Author information
JOURNAL OPEN ACCESS

2015 Volume 19 Issue 5 Pages 624-631

Details
Abstract

Clustering, a highly useful unsupervised classification, has been applied in many fields. When, for example, we use clustering to classify a set of objects, it generally ignores any uncertainty included in objects. This is because uncertainty is difficult to deal with and model. It is desirable, however, to handle individual objects as is so that we may classify objects more precisely. In this paper, we propose new clustering algorithms that handle objects having uncertainty by introducing penalty vectors. We show the theoretical relationship between our proposal and conventional algorithms verifying the effectiveness of our proposed algorithms through numerical examples.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2015 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
Previous article Next article
feedback
Top