Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Improving Rough Set Rule-Based Classification by Supplementary Rules
Masahiro InuiguchiKeisuke Washimi
Author information
JOURNAL OPEN ACCESS

2015 Volume 19 Issue 6 Pages 747-758

Details
Abstract

In rough set approaches, decision rules are induced from a given data set consisting of attribute values and a decision value. Induced rules are used to classify new objects, but this classification is not perfect, perhaps because the given data set does not include all possible patterns. No induced decision rules are matched totally for objects having missing patterns, and partially matched decision rules are used to estimate their classes. The classification accuracy of such an object is usually lower than that of an object totally matching decision rules. To improve the classification accuracy, we propose adding supplementary rules to the induced rules, defining the supplementary rules to improve the classification accuracy of objects only partially matching decision rules. We propose an algorithm for inducing supplementary rules, considering four classifiers consisting of supplementary rules together with originally induced rules.We investigate their performance. We also compare their classification accuracies to that of conventional classifier with originally induced rules.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2015 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
Previous article Next article
feedback
Top