Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Improved Object Recognition with Decision Trees Using Subspace Clustering
Billy PeraltaLuis Alberto Caro
Author information
JOURNAL OPEN ACCESS

2016 Volume 20 Issue 1 Pages 41-48

Details
Abstract

Generic object recognition algorithms usually require complex classification models because of intrinsic difficulties arising from problems such as changes in pose, lighting conditions, or partial occlusions. Decision trees present an inexpensive alternative for classification tasks and offer the advantage of being simple to understand. On the other hand, a common scheme for object recognition is given by the appearances of visual words, also known as the bag-of-words method. Although multiple co-occurrences of visual words are more informative regarding visual classes, a comprehensive evaluation of such combinations is unfeasible because it would result in a combinatorial explosion. In this paper, we propose to obtain the multiple co-occurrences of visual words using a variant of the CLIQUE subspace-clustering algorithm for improving the object recognition performance of simple decision trees. Experiments on standard object datasets show that our method improves the accuracy of the classification of generic objects in comparison to traditional decision tree techniques that are similar, in terms of accuracy, to ensemble techniques. In future we plan to evaluate other variants of decision trees, and apply other subspace-clustering algorithms.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2016 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
Previous article Next article
feedback
Top