Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Role of Robustness Measure in Rule Induction
Motoyuki OhkiEiji SekiyaMasahiro Inuiguchi
Author information
JOURNAL OPEN ACCESS

2016 Volume 20 Issue 4 Pages 580-589

Details
Abstract

Rough set approaches provide useful tools to induce minimal decision rules from given data. Acquired minimal rules are typically used to build a classifier. However, minimal rules are sometimes used for design knowledge. Specifically, if a new object is designed to satisfy the condition of a minimal rule, it can be classified into a class suggested by the rule. Although we are interested in the goodness of the set of obtained minimal decision rules for the purpose of building a classifier, we are more interested in the goodness of an individual minimal decision rule for design knowledge. In this study, we propose robustness measures as a new type of evaluation index for decision rules. The measure evaluates the extent to which interestingness is preserved after the some conditions are removed. Four numerical experiments are conducted to examine the usefulness of robusetness measures. Decision rules selected by robustness scores are compared with those selected by recall, which is the well-known measure to select good rules. Our results reveal that a different aspect of the goodness of a rule is evaluated by the robustness measure and thus, the robustness measure acts as an independent and complementary index of recall.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2016 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
Previous article Next article
feedback
Top