Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Learning Quadcopter Maneuvers with Concurrent Methods of Policy Optimization
Pei-Hua HuangOsamu Hasegawa
Author information
JOURNAL OPEN ACCESS

2017 Volume 21 Issue 4 Pages 639-649

Details
Abstract

This study presents an aerial robotic application of deep reinforcement learning that imparts an asynchronous learning framework and trust region policy optimization to a simulated quad-rotor helicopter (quadcopter) environment. In particular, we optimized a control policy asynchronously through interaction with concurrent instances of the environment. The control system was benchmarked and extended with examples to tackle continuous state-action tasks for the quadcoptor: hovering control and balancing an inverted pole. Performing these maneuvers required continuous actions for sensitive control of small acceleration changes of the quadcoptor, thereby maximizing the scalar reward of the defined tasks. The simulation results demonstrated an enhancement of the learning speed and reliability for the tasks.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2017 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
Previous article Next article
feedback
Top