Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Special Issue on Cutting Edge of Reinforcement Learning and its Applications
Experimental Study on Behavior Acquisition of Mobile Robot by Deep Q-Network
Hikaru SasakiTadashi HoriuchiSatoru Kato
Author information
JOURNAL OPEN ACCESS

2017 Volume 21 Issue 5 Pages 840-848

Details
Abstract

Deep Q-network (DQN) is one of the most famous methods of deep reinforcement learning. DQN approximates the action-value function using Convolutional Neural Network (CNN) and updates it using Q-learning. In this study, we applied DQN to robot behavior learning in a simulation environment. We constructed the simulation environment for a two-wheeled mobile robot using the robot simulation software, Webots. The mobile robot acquired good behavior such as avoiding walls and moving along a center line by learning from high-dimensional visual information supplied as input data. We propose a method that reuses the best target network so far when the learning performance suddenly falls. Moreover, we incorporate Profit Sharing method into DQN in order to accelerate learning. Through the simulation experiment, we confirmed that our method is effective.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2017 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
Previous article Next article
feedback
Top