Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Special Issue on Cutting Edge of Reinforcement Learning and its Applications
Exemplar-Based Learning Classifier System with Dynamic Matching Range for Imbalanced Data
Hiroyasu MatsushimaKeiki Takadama
Author information
JOURNAL OPEN ACCESS

2017 Volume 21 Issue 5 Pages 868-875

Details
Abstract

In this paper, we propose a method to improve ECS-DMR which enables appropriate output for imbalanced data sets. In order to control generalization of LCS in imbalanced data set, we propose a method of applying imbalance ratio of data set to a sigmoid function, and then, appropriately update the matching range. In comparison with our previous work (ECS-DMR), the proposed method can control the generalization of the appropriate matching range automatically to extract the exemplars that cover the given problem space, wchich consists of imbalanced data set. From the experimental results, it is suggested that the proposed method provides stable performance to imbalanced data set. The effect of the proposed method using the sigmoid function considering the data balance is shown.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2017 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
Previous article Next article
feedback
Top