Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Special Issue on Cutting Edge of Reinforcement Learning and its Applications
Comparison Between Reinforcement Learning Methods with Different Goal Selections in Multi-Agent Cooperation
Fumito UwanoKeiki Takadama
Author information
JOURNAL OPEN ACCESS

2017 Volume 21 Issue 5 Pages 917-929

Details
Abstract

This study discusses important factors for zero communication, multi-agent cooperation by comparing different modified reinforcement learning methods. The two learning methods used for comparison were assigned different goal selections for multi-agent cooperation tasks. The first method is called Profit Minimizing Reinforcement Learning (PMRL); it forces agents to learn how to reach the farthest goal, and then the agent closest to the goal is directed to the goal. The second method is called Yielding Action Reinforcement Learning (YARL); it forces agents to learn through a Q-learning process, and if the agents have a conflict, the agent that is closest to the goal learns to reach the next closest goal. To compare the two methods, we designed experiments by adjusting the following maze factors: (1) the location of the start point and goal; (2) the number of agents; and (3) the size of maze. The intensive simulations performed on the maze problem for the agent cooperation task revealed that the two methods successfully enabled the agents to exhibit cooperative behavior, even if the size of the maze and the number of agents change. The PMRL mechanism always enables the agents to learn cooperative behavior, whereas the YARL mechanism makes the agents learn cooperative behavior over a small number of learning iterations. In zero communication, multi-agent cooperation, it is important that only agents that have a conflict cooperate with each other.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2017 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
Previous article Next article
feedback
Top