Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
A Modification of MOEA/D for Solving Multi-Objective Optimization Problems
Wei ZhengYanyan TanMeng GaoWenzhen JiaQiang Wang
Author information
JOURNAL OPEN ACCESS

2018 Volume 22 Issue 2 Pages 214-223

Details
Abstract

In this paper, a novel modified algorithm based on MOEA/D, abbreviated as mMOEA/D, is proposed for well solving the multi-objective optimization problems. Our proposed mMOEA/D inherits from MOEA/D. In mMOEA/D, a novel elastic weight vectors design method is introduced and adopted to make those weight vectors spread more widely. On the other hand, a flexible and efficient trail DE operator is designed and used in mMOEA/D for further enhancing the performance of MOEA/D. Three groups of experimental studies are carried out. Proposed mMOEA/D is compared with the four state-the-art multi-objective optimization evolutionary algorithms on solving the multi-objective optimization problems with many objectives, and the other is that mMOEA/D is compared with MOEA/D-DE, an improved version of MOEA/D, on solving the multi-objective optimization problems with complicated PS shapes. The versions of mMOEA/D with the improvement of weight vector and DE operator are compared with MOEA/D-DE to solve multi-objective optimization problems at last. The experimental results show that mMOEA/D performs the best on almost all test instances. In other words, our proposed modification of MOEA/D is effective.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2018 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
Previous article Next article
feedback
Top