Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Emotion Prediction and Cause Analysis Considering Spatio-Temporal Distribution
Saki KitaokaTakashi Hasuike
Author information
JOURNAL OPEN ACCESS

2019 Volume 23 Issue 3 Pages 512-518

Details
Abstract

This paper proposes an analytical model that clarifies the relationship between specific place and human emotions as well as the cause of the emotions using tweet data with location information. In addition, Twitter data with location information are analyzed to show the effectiveness of our proposed model. First, geotags are provided to collect Twitter data and increase the number of data for analysis. Second, training data with emotion labels based on the emotion expression dictionary are created and used, and supervised learning is done using fastText to obtain the emotion estimates. Finally, by using the result, topic extraction is performed to estimate the causes of the emotions. As a result, the transition of emotion in time and space as well as its cause is obtained.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2019 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
Previous article Next article
feedback
Top