Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
IPMSM Speed and Current Controller Design for Electric Vehicles Based on Explicit MPC
Fang LiuFeng GaoLing LiuDenis N. Sidorov
Author information
JOURNAL OPEN ACCESS

2019 Volume 23 Issue 6 Pages 1019-1026

Details
Abstract

The difficulties in implementing the model predictive control (MPC) in interior permanent-magnet synchronous motors (IPMSMs) consist of the nonlinear behavior of IPMSMs and the computational effort required by MPC. This paper presents an IPMSM controller design method for electric vehicles based on explicit MPC (EMPC), which uses a different linearization method. The proposed controller combines the speed and current controllers and replaces the traditional cascade structure. First, the nonlinear terms in the system model are added into the control input as voltage compensation to obtain a simple linear model. Next, the proposed controller based on MPC is designed, which considers the effects of load torque and uses an increment model. Furthermore, the controller applies both current and voltage constraints. The EMPC method based on a binary search is used to accelerate the solution of the optimization problem. Finally, the simulation results show the validity and superiority of the proposed method.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2019 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
Previous article Next article
feedback
Top