Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Joint Trajectory Planning Based on Minimum Euclidean Distance of Joint Angles of a Seven-Degrees-of-Freedom Manipulator for a Sequential Reaching Task
Yoshiaki TaniaiTomohide Naniwa
Author information
JOURNAL OPEN ACCESS

2019 Volume 23 Issue 6 Pages 997-1003

Details
Abstract

When a nuclear power disaster occurs at a nuclear power plant, it is hazardous for humans to enter the plant. If robots could remove radioactive substances adhering to a plane such as a plant wall, humans would be able to enter the plant to investigate the situation and to work. In this study, to efficiently remove radioactive substances from a wall with a manipulator, we examined joint trajectory planning based on the minimum Euclidean distance of joint angles of a seven-degrees-of-freedom (7-DOF) serial link manipulator for a sequential reaching task on a plane. We demonstrate the planning for the sequential reaching task, which is an iterative point-to-point reaching movement between positions on a plane. The joint angles for each target position were obtained based on the inverse kinematics for an arm angle, and the optimal arm angles within the constraints of the joint angles were computed by the sequential quadratic programming method. The optimal trajectories for the arm angles were compared with the trajectories of the joint angles that were the eight inverse kinematic solutions for a fixed arm angle. The result showed that through optimal planning, an efficient trajectory within the movable ranges of the joint angles could be obtained for the sequential reaching task.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2019 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
Previous article Next article
feedback
Top