Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Uncertain Nonlinear Process Monitoring Using Interval Ensemble Kernel Principal Component Analysis
Xianrui WangGuoxin ZhaoYu LiuShujie Yang
Author information
JOURNAL OPEN ACCESS

2021 Volume 25 Issue 1 Pages 101-109

Details
Abstract

To solve uncertainties in industrial processes, interval kernel principal component analysis (IKPCA) has been proposed based on symbolic data analysis. However, it is experimentally discovered that the performance of IKPCA is worse than that of other algorithms. To improve the IKPCA algorithm, interval ensemble kernel principal component analysis (IEKPCA) is proposed. By optimizing the width parameters of the Gaussian kernel function, IEKPCA yields better performances. Ensemble learning is incorporated in the IEKPCA algorithm to build submodels with different width parameters. However, the multiple submodels will yield a large number of results, which will complicate the algorithm. To simplify the algorithm, a Bayesian decision is used to convert the result into fault probability. The final result is obtained via a weighting strategy. To verify the method, IEKPCA is applied to the Tennessee Eastman (TE) process. The false alarm rate, fault detection rate, accuracy, and other indicators used in the IEKPCA are compared with those of other algorithms. The results show that the IEKPCA improves the accuracy of uncertain nonlinear process monitoring.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2021 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII Official Site.
https://www.fujipress.jp/jaciii/jc-about/
Previous article Next article
feedback
Top