Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
An Improved Algorithm for Detection and Pose Estimation of Texture-Less Objects
Jian PengYa Su
Author information
JOURNAL OPEN ACCESS

2021 Volume 25 Issue 2 Pages 204-212

Details
Abstract

This paper introduces an improved algorithm for texture-less object detection and pose estimation in industrial scenes. In the template training stage, a multi-scale template training method is proposed to improve the sensitivity of LineMOD to template depth. When this method performs template matching, the test image is first divided into several regions, and then training templates with similar depth are selected according to the depth of each test image region. In this way, without traversing all the templates, the depth of the template used by the algorithm during template matching is kept close to the depth of the target object, which improves the speed of the algorithm while ensuring that the accuracy of recognition will not decrease. In addition, this paper also proposes a method called coarse positioning of objects. The method avoids a lot of useless matching operations, and further improves the speed of the algorithm. The experimental results show that the improved LineMOD algorithm in this paper can effectively solve the algorithm’s template depth sensitivity problem.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2021 Fuji Technology Press Ltd.
Previous article Next article
feedback
Top