Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Automatic Carpal Site Detection Method for Evaluation of Rheumatoid Arthritis Using Deep Learning
Kohei NakatsuRashedur RahmanKento MoritaDaisuke FujitaSyoji Kobashi
Author information
JOURNAL OPEN ACCESS

2022 Volume 26 Issue 1 Pages 42-50

Details
Abstract

Approximately 600,000 to 1,000,000 patients are diagnosed with rheumatoid arthritis (RA) in Japan. To provide appropriate treatment, it is necessary to accurately measure the progression of RA by diagnosing the disease several times a year. The modified total sharp score (mTSS) calculated from hand X-ray images is a standard diagnostic method for RA progression. However, this diagnostic method is time-consuming as the scores are rated at as many as 16 points per hand. Accordingly, in order to shorten the diagnosis time of RA patients and improve the quality of diagnosis, the development of computer-aided diagnosis (CAD) systems is expected. We have previously proposed a CAD system that can detect finger joint positions using a support vector machine and can estimate the mTSS using ridge regression. In this study, we propose a fully automatic detection method of RA score evaluation points in the carpal site from simple hand X-ray images using deep learning. The proposed method first segments the carpal site using deep learning. Next, the RA evaluation points are automatically determined from each segment based on prior knowledge. Experimental results on X-ray images of the hands of 140 patients with RA showed that the mTSS evaluation point at the carpal site could be detected with an average error of 25 pixels. This study enables the automatic detection of RA score evaluation points in the carpal site. In the diagnosis of RA, the time required for diagnosis can be reduced by automating the determination of diagnostic points by physician.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2022 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top