Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Embedding-Based Potential Sales Forecasting of Bread Product
Kohei TakahashiYusuke Goto
Author information
JOURNAL OPEN ACCESS

2022 Volume 26 Issue 2 Pages 236-246

Details
Abstract

In this study, we investigate the potential sales forecasts of unhandled bread products in retail stores based on factory shipment data. An embedding-based forecasting method that uses large-scale information network embedding (LINE) and simultaneously considers first- and second-order proximities is developed to define similar neighboring stores using their product–store relationship and to predict their potential sales volume. LINE is a network-embedding method that transforms network data into a low-dimensional distributed representation and requires a low computation time, even when applied to large networks. The results show that our proposed method outperforms a simple prediction method (Baseline) and t-SNE, a well-known dimensionality reduction method for high-dimensional data, in terms of accurate product sales prediction via simulation experiments. Furthermore, we conduct a sensitivity analysis to verify the applicability of our proposed method when the forecasting target is expanded to products sold in fewer stores and in stores with less product variety.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2022 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top