Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Fast Search Strategy for Robots in Dynamic Home Environment
Yuhao WangHao WuGuohui TianGuoliang LiuFei LuYanyan Wang
Author information
JOURNAL OPEN ACCESS

2022 Volume 26 Issue 3 Pages 315-324

Details
Abstract

In an unstructured home environment, environmental information is mostly disorganized. It is difficult for a service robot to obtain sufficient service information, which significantly hinders task execution. To solve this problem, a new object search strategy is proposed for improving the speed and accuracy of object search in a complex family environment. In this method, a family-environment knowledge graph is constructed using real environmental information and human knowledge, which plays a guiding role in task execution. The home environment is divided into three levels: functional rooms, static objects, and dynamic objects. The co-occurrence probabilities are obtained from open knowledge sources, including the probabilities between static and dynamic objects and between static objects and functional rooms. They are combined with ontology knowledge based on the home to form prior knowledge of a service robot. Inspired by the human search process, a distance function is introduced to calculate the distance between the robot and target objects for optimizing the search strategy. To improve the robustness of robotic services, we designed a probabilistic update model based on the service tasks and knowledge databases. Experimental results indicated that the proposed search strategy can significantly shorten the search time and increase the search accuracy compared with methods without prior knowledge and the distance function.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2022 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top