Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Reconnaissance and Confirmation Task Planning of Multiple Fixed-Wing UAVs with Specific Payloads: A Comparison Study
Hao ZhangLihua DouBin XinRuowei ZhangQing Wang
Author information
JOURNAL OPEN ACCESS

2022 Volume 26 Issue 4 Pages 570-580

Details
Abstract

In this study, the reconnaissance and confirmation task planning of multiple fixed-wing unmanned aerial vehicles (UAV) with specific payloads, which is an NP-hard problem with strong constraints and mixed variables, is decomposed into two subproblems, task allocation with “payload-target” matching constraints, and fast path planning of the UAV group, for which two mathematical models are respectively established. A bi-layer collaborative solution framework is also proposed. The outer layer optimizes the allocation scheme between the UAVs and targets, whereas the inner layer generates the UAV path and evaluates the outer scheme. In the outer layer, a unified encoding based on the grouping and pairing relationship between UAVs and targets is proposed. The corresponding combinatorial mutation operators are then designed for the representative NSGA-II, MOEA/D-AWA, and DMOEA-ϵC algorithms. In the inner layer, an efficient heuristic algorithm is used to solve the path planning of each UAV group. The simulation results verify the effectiveness of the cooperative bi-layer solution scheme and the combined mutation operators. At the same time, compared with the NSGA-II and MOEA/D-AWA, DMOEA-ϵC can obtain a significantly better Pareto front and can weigh the assigned number of UAVs and the total task completion time to generate more diversified reconnaissance confirmation execution schemes.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2022 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top