Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Control Strategies for Gas Pressure Energy Recovery Systems
Dong WeiRuochen ZhaoYaxuan Xiong Mingxin Zuo
Author information
JOURNAL OPEN ACCESS

2022 Volume 26 Issue 4 Pages 590-599

Details
Abstract

In gas transmission, the regulator needs to adjust the gas pressure from high to low. The pressure energy can be then recovered by an expander, and the expander can drive a generator to produce electricity. However, the gas pressure regulator system and generator torque process often present difficult adjustment of PI parameters, and strong non-linearity of the hysteresis comparator and switching table in the traditional direct torque control (DTC) cause difficulties in the controller design and lead to large fluctuations of the generator torque. This paper designs a model predictive controller (MPC) for the gas pressure regulator process to reduce generator torque fluctuations. Simultaneously, a fuzzy PI controller is designed for the generator rotational speed process, and an MPC controller is exploited for the torque process; they operate in a cascaded manner. The fuzzy PI controller is used to calculate the torque set point. And the MPC controller is designed to obtain the optimal voltage vector of the generator for improving control performance through time delay compensation. The simulation experimental results highlight that the fluctuation of the regulator outlet gas pressure is reduced by 7.9% and 8.1%, and the output torque range is reduced by 3.4% and 2.1% compared with the traditional PI control and fuzzy PI control, respectively. The generator torque fluctuation range is reduced by 82.3%, the rotational speed fluctuation range is reduced by 76.9%, and the three-phase current fluctuation range is reduced by 76.6% compared with the traditional DTC.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2022 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top