Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Contrast Enhancement Method Based on Multi-Scale Retinex and Adaptive Gamma Correction
Shaoying MaChuanying YangShi Bao
Author information
JOURNAL OPEN ACCESS

2022 Volume 26 Issue 6 Pages 875-883

Details
Abstract

The most common methods to improve the quality of images with insufficient visibility are retinex-based and gamma correction methods. The fundamental assumption of retinex theory is that the color of an object can be represented as the multiplication of its illumination and reflectance. The retinex-based method improves the quality of the insufficiently visible image by repairing its illumination. The multi-scale retinex (MSR) is a classic retinex-based method. Though MSR better enhances the details of the image, it sometimes reverses its lightness value. The method based on adaptive gamma correction with weighting distribution (AGCWD) is to modify the visibility of images by gamma function. However, AGCWD provides a good enhancement effect on low-contrast areas, it also enhances the high-light region making it too bright. In this paper, a method that combines the advantages of MSR and AGCWD is proposed. Firstly, the advatages of MSR and AGCWD are preserved into detailed image through the weight that considers illumination. Then, the image constructed by combining the detailed and original images could maintain the contrast of the high-light region and enhance details of the low-light region. The validity of the proposed method is shown by experiments using several images.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2022 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
Next article
feedback
Top