Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
A Curiosity-Based Autonomous Navigation Algorithm for Maze Robot
Xiaoping ZhangYihao Liu Li WangDunli HuLei Liu
Author information
JOURNAL OPEN ACCESS

2022 Volume 26 Issue 6 Pages 893-904

Details
Abstract

The external reward plays an important role in the reinforcement learning process, and the quality of its design determines the final effect of the algorithm. However, in several real-world scenarios, rewards extrinsic to the agent are extremely sparse. This is particularly evident in mobile robot navigation. To solve this problem, this paper proposes a curiosity-based autonomous navigation algorithm that consists of a reinforcement learning framework and curiosity system. The curiosity system consists of three parts: prediction network, associative memory network, and curiosity rewards. The prediction network predicts the next state. An associative memory network was used to represent the world. Based on the associative memory network, an inference algorithm and distance calibration algorithm were designed. Curiosity rewards were combined with extrinsic rewards as complementary inputs to the Q-learning algorithm. The simulation results show that the algorithm helps the agent reduce repeated exploration of the environment during autonomous navigation. The algorithm also exhibits a better convergence effect.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2022 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top