Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Tracking Control Method of Multi Motor Actuator Saturation Based on Total Amount Consistency
Lin JiaJunming ZhangChangfan ZhangJing He
Author information
JOURNAL OPEN ACCESS

2023 Volume 27 Issue 3 Pages 501-510

Details
Abstract

In collaborative control of multi motors for heavy-duty locomotives, the output value of the motor frequently exceeds its maximum allowable value during power redistribution. This results in a saturated motor owing to the power redundancy of each wheel set of the train. In this study, an algorithm for the tracking control of a consistent total amount of the extended observer through anti-saturation is proposed. First, mathematical models of multi-motor traction systems are developed. The system includes uncertain parameter perturbations and external perturbations. Second, a new type of extended sliding mode observer (ESMO) is designed to reduce the influence of the tracking effect on the input saturation of the system. Subsequently, for collaborative control of multi motors in heavy-duty locomotives, a new scheme for dynamic and auxiliary anti-saturation compensation (anti-windup) is established. The perturbation observation results and the systems’ auxiliary status are respectively input into the sliding mode controller (SMC). A traction total-amount coordinated tracking control (TACTC) of multi motors is achieved to ensure consistency of the system’s total output torque and the given traction characteristic curve. Finally, simulations and tests are performed on the motor actuators to demonstrate a good control effect.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2023 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top