Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Estimating Tomato Plant Leaf Area Using Multiple Images from Different Viewing Angles
Nobuhiko YamaguchiHiroshi OkumuraOsamu FukudaWen Liang YeohMunehiro Tanaka
Author information
JOURNAL OPEN ACCESS

2024 Volume 28 Issue 2 Pages 352-360

Details
Abstract

The estimation of leaf area is an important measure for understanding the growth, development, and productivity of tomato plants. In this study, we focused on the leaf area of a potted tomato plant and proposed methods, namely, NP, D2, and D3, for estimating its leaf area. In the NP method, we used multiple tomato plant images from different viewing angles to reduce the estimation error of the leaf area, whereas in the D2 and D3 methods, we further compensated for the perspective effects. The performances of the proposed methods were experimentally assessed using 40 “Momotaro Peace” tomato plants. The experimental results confirmed that the NP method had a smaller mean absolute percentage error (MAPE) on the test set than the conventional estimation method that uses a single tomato plant image. Likewise, the D2 and D3 methods had a smaller MAPE on the test set than the conventional method that did not compensate for perspective effects.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2024 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top