Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
Selecting Pedal Load for Lower-Limb Rehabilitation Based on the Combination of Muscle Synergy and Fourier Series
Shigeki KurodaJinhua She Sota NakamuroRennong WangDaisuke ChugoKeio IshiguroHiromi SakaiHiroshi Hashimoto
Author information
JOURNAL OPEN ACCESS

2024 Volume 28 Issue 3 Pages 595-605

Details
Abstract

This paper introduces a new lower-limb rehabilitation machine that meets the rehabilitation needs of hemiplegic patients. First, a left–right independent rotary pedal mechanism was selected to facilitate rehabilitation and adapt to the user’s physical condition. Then, a half model of the lower-limb rehabilitation machine is designed and manufactured with ergonomics in mind. As analytical tools, we combine non-negative matrix factorization and non-negative double singular value decomposition to calculate muscle synergy of the walking muscle surface electromyography (sEMG) signal, and use cosine similarity to evaluate the similarity between walking and pedaling activities. By comparing the results of the walking and pedaling experiments, the effectiveness of pedaling in gait rehabilitation is revealed. To further improve the similarity between walking and pedaling, double integration of the sEMG signal is introduced, and the relationship between load input and rotation angle is described for the first time using Fourier series. The results of the experiment confirmed that more than half of the 10 subjects performed pedaling exercises similar to walking using Fourier series loading compared to pedaling exercises with normal constant loading. This loading parameter may have the potential to improve rehabilitation efficiency for many subjects compared to the usual exercise.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2024 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top