Journal of Advanced Computational Intelligence and Intelligent Informatics
Online ISSN : 1883-8014
Print ISSN : 1343-0130
ISSN-L : 1883-8014
Regular Papers
3D Ship Hull Design Direct Optimization Using Generative Adversarial Network
Luan Thanh TrinhTomoki HamagamiNaoya Okamoto
Author information
JOURNAL OPEN ACCESS

2024 Volume 28 Issue 3 Pages 693-703

Details
Abstract

The direct optimization of ship hull designs using deep learning algorithms is increasingly expected, as it proposes optimization directions for designers almost instantaneously, without relying on complex, time-consuming, and expensive hydrodynamic simulations. In this study, we proposed a GAN-based 3D ship hull design optimization method. We eliminated the dependence on hydrodynamic simulations by training a separate model to predict ship performance indicators. Instead of a standard discriminator, we applied a relativistic average discriminator to obtain better feedback regarding the anomalous designs. We add two new loss functions for the generator: one restricts design variability, and the other sets improvement targets using feedback from the performance estimation model. In addition, we propose a new training strategy to improve learning effectiveness and avoid instability during training. The experimental results show that our model can optimize the form factor by 5.251% while limiting the deterioration of other indicators and the variability of the ship hull design.

Content from these authors

This article cannot obtain the latest cited-by information.

© 2024 Fuji Technology Press Ltd.

This article is licensed under a Creative Commons [Attribution-NoDerivatives 4.0 International] license (https://creativecommons.org/licenses/by-nd/4.0/).
The journal is fully Open Access under Creative Commons licenses and all articles are free to access at JACIII official website.
https://www.fujipress.jp/jaciii/jc-about/#https://creativecommons.org/licenses/by-nd
Previous article Next article
feedback
Top