Abstract
Slurry infiltrated fiber concrete (SIFCON) have received considerable attention in recent years. The SIFCON is distinguished from the conventional steel fiber reinforced cementitious composite (FRCC) by its high volume ratio of fibers, far beyond that of typical steel FRCC. Although this material has already been used for important structures including power plants and military facilities, very little is known about its behavior under blast loading. We therefore have experimentally investigated the behavior of SIFCON under the contact blast loading for the first time. This paper is intended to report these blast test results, in which varying amounts of gelignite embedded in the specimens were set off. After the blast test, diameter of crater, diameter of inlet of charge hole, and bulge of top surface of SIFCON were measured from the pictures using a commercial stereophotogrammetry program ShapeMetrix3D, and compared them to that of the conventional high strength concrete. The comparison results show the much higher blast resistance of SIFCON over conventional high strength concrete. In addition, the coefficient of resistance of SIFCON is evaluated which helps us to design the SIFCON structure subject to blast loading