Abstract
The quality requirements of concrete have become more stringent in recent times; therefore, the quality control of early-age concrete has become an extremely important task at construction sites. Among the various factors affecting the quality performance of concrete, its curing temperature and compressive strength were focused upon in this study. A curing temperature management system was developed for in-place concrete that enables direct, real-time measure-ments and continuous monitoring of the internal temperature of concrete via an all-in-one wireless sensor network (WSN) during the early curing stages. The system can also suggest an informed decision about stripping of the form-works without having to consider the wiring at the construction site. To validate the system, its performance in monitor-ing curing temperature was investigated and verified by its application in indoor tests and at real construction sites. The compressive strength of concrete was predicted using several functions based on the maturity and the curing tempera-ture. Then, a field experiment was performed to measure the curing temperature of concrete using the developed system. After fresh concrete was poured into the formworks, the WSN signals were measured at a 150-m radius from the field office. The signals were acquired for 28 days without any dispersion or interruption at the construction site. Therefore, it is concluded that the developed system can improve the measurement accuracy of concrete curing temperatures and can also be used at an actual construction site.