Journal of Advanced Concrete Technology
Online ISSN : 1347-3913
ISSN-L : 1346-8014
Scientific paper
Quantitative Analysis of Phase Assemblage and Chemical Shrinkage of Alkali-Activated Slag
Hailong YeAleksandra Radlińska
Author information
JOURNAL FREE ACCESS

2016 Volume 14 Issue 5 Pages 245-260

Details
Abstract

This paper presents a quantitative analysis of hydrated phase assemblage and chemical shrinkage of alkali-activated slag (AAS) as a function of pH and modulus (n= SiO2/Na2O molar ratio) of activator. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and thermodynamic modeling, provide a com-prehensive characterization of the phase assemblages and distribution in AAS microstructure. The main hydration products in AAS are calcium-alumina-silicate-hydrate (C-A-S-H) and hydrotalcite-type phases, while the formation of other hydrates is activator-dependent. For NaOH-activated slag, hydration products are preferentially formed around slag particles showing a hydrated rim, while for sodium silicate-activated slag, hydration products are initialized at both slag surface and inter-particle spaces simultaneously. However, a dark hydrated rim whose composition is similar to that of alkali-aluminosilicate-hydrate was observed around unhydrated slag in aged AAS. It indicates that the composition and spatial distribution of hydrates in AAS microstructure is heterogeneous, which cannot be predicted by thermodynamic modeling. The chemical shrinkage of AAS was quantified using buoyancy method and backscattered image analysis. The average chemical shrinkage of AAS is about 0.1211 ml/gslag and increases with the increasing modulus and pH of activator. The chemical shrinkage of AAS is about twice larger than that of portland cement, which may be attributed to the limited formation of expansive crystalline phases, such as ettringite and portlandite.

Content from these authors
© 2016 by Japan Concrete Institute
Previous article Next article
feedback
Top