Journal of Advanced Concrete Technology
Online ISSN : 1347-3913
ISSN-L : 1346-8014
Scientific paper
Experimental and Numerical Investigation on Seismic Performance of a Hybrid RC Frame System with Stiffened Masonry Wall
Xiaofei MaJianxun MaYanchao Yue
Author information
JOURNAL FREE ACCESS

2018 Volume 16 Issue 12 Pages 600-614

Details
Abstract

This paper presents an experimental and numerical study on a new hybrid structural system with RC frame and stiffened masonry wall. Summarily, four different connection types between frames and reinforced masonry walls were divided in this investigation. Firstly, construction for different connecting modes were described in detail and then tests of four specimens under reciprocating load were carried out to study the influence of connection modes on failure modes and hysteretic response. Results reveal that all these specimens have higher ductility and lower stiffness degradation than RC frame structure and frame-shear wall structure. Furthermore, the specimen of type Ⅳ shows lower ductility and higher ultimate bearing capacity and energy dissipation than the other three because of the more effective connection mode to avoid weak load-bearing point and unsatisfied failure mode. Finally, FE models were established to simulate the seismic behavior of testing specimens. Numerical results can accurately predict the failure modes and cyclic response except for failing to fully replicate the pinching response due to ignorance of bond slip effect. Study results will provide solid support and reference for the further nonlinear seismic response analysis and for the application in practical engineering for this new proposed hybrid structural system.

Content from these authors
© 2018 by Japan Concrete Institute
Previous article
feedback
Top