2006 Volume 4 Issue 1 Pages 59-72
Engineered Cementitious Composites (ECCs) have recently demonstrated their high performance with pseudo strain hardening (PSH) behavior in civil engineering structures and buildings. These materials incorporate low cost fibers such as Polyvinyl Alcohol fibers, which often rupture in composites. Such fiber rupture type ECCs tend to have inferior and unsaturated PSH behavior compared with those incorporating properly designed pull out type fiber. The present study focuses on presenting practical design criteria to achieve saturated PSH behavior in fiber rupture type ECCs. These criteria are proposed based on two performance indices, which are measures of energy exchange during steady state flat crack propagation and stress level to initiate micro-cracks. The latter performance index necessitates a new cracking strength prediction theory, which is proposed in the current study. Finally the cracking strength theory is justified using tensile test data, and the criteria are proposed based on the data in terms of these two indices.