Journal of Advanced Concrete Technology
Online ISSN : 1347-3913
ISSN-L : 1346-8014
Scientific paper
Modeling and Analysis of Shear-critical ECC Members with Anisotropic Stress and Strain Fields
Benny SuryantoKohei NagaiKoichi Maekawa
Author information
JOURNALS FREE ACCESS

2010 Volume 8 Issue 2 Pages 239-258

Details
Abstract

This paper describes an attempt to predict the response of shear-critical ECC members that exhibit strong anisotropic stress and strain fields. The ECC members investigated include pre-cracked ECC plates under stress field rotation, orthogonally-reinforced ECC (R/ECC) panel under pure shear, and shear-critical R/ECC beams under reversed cyclic loading. To achieve a simple yet accurate prediction, the mechanics of the ECC are represented by smeared models using a fixed crack approach. The applicability of these models is demonstrated through a simulation of ECC plates and R/ECC panel responses. This demonstrates the importance of an appropriate shear transfer model in representing essential behaviors of ECC in an anisotropic field. Predictions of these models were then compared against experimental results of shear-critical R/ECC beams with a M/Vd ratio of 1.0 and 0.5. For beams with a M/Vd ratio of 1.0, a good agreement is observed in terms of hysteretic response, crack pattern, and failure mechanisms. For beams with a 0.5 M/Vd ratio, the analysis somewhat underestimates the beam capacity, although it does predict a correct failure mechanism. Overall, this paper demonstrates that practical application of nonlinear finite-element analysis to ECC structural members is possible.

Information related to the author
© 2010 by Japan Concrete Institute
Previous article
feedback
Top