2011 Volume 9 Issue 3 Pages 231-239
The present study concerns a technique for determining the chloride binding capacity, using the XRD curve containing the peaks for Friedel' s salt. The influence of chloride binding on the corrosion behaviour was also evaluated. The binding capacity of chloride ions in cement paste was determined by the water extraction method. As a result, it was found that the chloride binding capacity is strongly dependent on the W/C, binder type, curing age and total chloride concentration in the paste. It is notable that chloride binding has a crucial influence on corrosion propagation: an increase in the binding capacity resulted in a decrease in the corrosion rate at a given chloride concentration in mortar specimens. However, the impact of chloride binding on the onset of corrosion was marginal, presumably due to a release of bound chlorides into free chlorides at the stage of corrosion, accompanying a pH fall in the vicinity of the steel. A strong relation between the peak intensity for Friedel' s salt and the concentration of bound chloride was observed, which can be used to determine the bound chlorides and thus the risk of chloride-induced corrosion of steel in concrete.