Abstract
Fibrous adsorbent for removal and recovery of metal ions have been synthesized by graft polymerization. In the grafting, the functional groups which have high selectivity against for target metal ions such as Fe, Sc, As, and U are introduced onto nonwoven fabric. When the monomer has a chelate group which makes selective coordination bond to specific these ions, it was directly grafted on the trunk polymer. In the case of precursor monomer having functional groups such as epoxy ring, the grafted trunk fabric is chemically modified. The resultant fibrous adsorbent leads the swift adsorption of metal ions. This property by using fibrous material can reduce the column size of adsorbent in the purification of waste water. The size of purification equipment becomes quite compact and that implies total volume of equipment can reduce. Instead of organic solvent, emulsion system which disperses monomer micelles in water with assistance of surfactant was found to accelerate the graft polymerization. This means the air pollution from organic solvent can be avoided by water system grafting. Furthermore, since the emulsion grafting was highly efficient, the required irradiation dose was considerably lower compared to general organic solvent system. As a result, the emulsion grafting has enormous potential for natural polymer to use as a trunk material for grafting. If a natural polymer such as cellulose can be used, the dependence on petroleum resources, the amount of industrial waste and the generation of carbon dioxide will be reduced to some extent.