Transactions of the Japan Society for Computational Methods in Engineering
Online ISSN : 2759-3932
Print ISSN : 1348-5245
TENSION-COMPRESSION ASYMMETRY EVALUATION OF A NONRECIPROCAL GEL BY HOMOGENIZATION ANALYSIS
Takuma FUSESeishiro MATSUBARASo NAGASHIMADai OKUMURA
Author information
JOURNAL OPEN ACCESS

2023 Volume 23 Pages 137-142

Details
Abstract
A nonreciprocal gel consisting of hydrogel and nanosheet exhibits mechanical nonreciprocity, which has potential applications in mechanical engineering. An earlier study has revealed that this mechanical nonreciprocity is triggered by the tension-compression asymmetry resulting from the microscopic buckling behavior of nanosheets during compressive deformation, but the relevant influencing factors remain unknown. In this study, we investigate the microscopic buckling behavior and the resultant tension-compression asymmetry in a nonreciprocal gel subjected to uniaxial conditions. Eigenvalue buckling and post-buckling analyses equipped with computational homogenization are performed on a unit cell modeled as an elastic bilayer for which ratios of Young’s modulus and thickness are parameterized. The results confirm that selecting a dilute microscopic buckling with the characteristic wavelength or a non-dilute microscopic buckling with the infinite wavelength hinges on the ratios of Young’s modulus and thickness, which is consistent with the theoretical solution for the buckling behavior of a layered composite. We also elucidate that the tension-compression asymmetry is more pronounced as the Young’s modulus ratio increases or the thickness ratio decreases.
Content from these authors
© 2023 Japan Society for Computational Methods in Engineering

この記事はクリエイティブ・コモンズ [表示 - 非営利 - 改変禁止 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
Previous article Next article
feedback
Top