Journal of Atherosclerosis and Thrombosis
Online ISSN : 1880-3873
Print ISSN : 1340-3478
ISSN-L : 1340-3478
Original Articles
Accelerated Calcification Represses the Expression of Elastic Fiber Components and Lysyl Oxidase in Cultured Bovine Aortic Smooth Muscle Cells
Hideki SugitaniHiroshi WachiRobert P. MechamYoshiyuki Seyama
Author information
JOURNAL OPEN ACCESS

2002 Volume 9 Issue 6 Pages 292-298

Details
Abstract

Vascular calcification is a common feature of advanced atherosclerosis resulting in reduced elasticity of elastic arteries. However, the relationship between elastic fibers and vascular calcification at the molecular and cellular levels remains unknown. We investigated the expression of major elastic fiber components such as tropoelastin (TE) and fibrillin-1 (FBN1) and elastin-related enzyme, lysyl oxidase (LO), in a calcification model using β-glycerophosphate (β-GP) in cultured bovine aortic smooth muscle cells (BASMCs). Ten mM of β-GP stimulated calcium deposition in a time-dependent manner. As determined by Western blot analysis, 10 mM of β-GP time-dependently decreased TE and FBN1 protein levels. TE, FBN1, and LO mRNA levels, assessed by reverse transcription-polymerase chain reaction, were also decreased by exposure to 10 mM β-GP. Furthermore, we investigated whether the processes of calcification in BASMCs directly control these regulations. In experiments using levamisole, an alkaline phosphatase inhibitor, and DMDP, a bisphosphonate, both inhibitors inhibited down-regulation during β-GP-induced calcification, suggesting that the down-regulation of TE, FBN1, and LO directly relates to calcium deposition. In cases of vascular calcification, the decreased expression of TE, FBN1, and LO may be partially responsible for decreased vascular elasticity and also for the decreased formation of new elastic fibers.

Content from these authors

この記事はクリエイティブ・コモンズ [表示 - 非営利 - 継承 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.ja
Previous article Next article
feedback
Top