JOURNAL OF CHEMICAL ENGINEERING OF JAPAN
Online ISSN : 1881-1299
Print ISSN : 0021-9592
Materials Engineering and Interfacial Phenomena
Surface Modification of Silica Coated ZnO Nanoparticles with 3-Aminopropyltriethoxysilane by Microwave-Assisted Method and Its Effect on the Properties of Coated Samples
Takeshi FurusawaYusaku KadotaAya MatsuzukaFumio KurayamaNewaz Mohammed BahadurMasahide SatoNoboru Suzuki
Author information
JOURNAL RESTRICTED ACCESS

2014 Volume 47 Issue 12 Pages 900-907

Details
Abstract
The present study investigates silica coated ZnO prepared by microwave-assisted sol-gel method from tetraethoxysilane (TEOS) and commercial ZnO nanoparticles, and further treated with 3-aminopropyltriethoxysilane (APTES) to change the surface characteristics. For the silica coating of ZnO nanoparticles in a batch type microwave apparatus, two kinds of TEOS/ZnO starting ratios (=0.3, 0.5) were used. The transmission electron microscope (TEM) images of coated samples with different TEOS/ZnO starting ratios suggested that uniform silica coating on the ZnO surface was observed for the coated sample with a TEOS/ZnO ratio of 0.5; whereas, the ZnO surface was partly exposed on the sample with a TEOS/ZnO ratio of 0.3. When these silica coated ZnO nanoparticles were used as starting materials for APTES treatment, it was revealed that 5 wt% (=APTES/silica coated ZnO) of APTES loading was enough to change the dispersion property of the sample with a TEOS/ZnO ratio of 0.5 in the organic solvent/water system. On the contrary, a higher APTES loading amount (10 wt%) was needed for the sample with a TEOS/ZnO ratio of 0.3 to observe the same phenomenon. The results of TEM observation, Fourier Transform Infrared (FT-IR) analysis, and Zeta potentials for the coated samples supported the results of dispersion tests in the organic solvent/water system. Photo-catalytic activities of the samples with a TEOS/ZnO ratio of 0.5 kept at low level (less than 5% compared to bare ZnO) with increasing APTES loading amounts. In contrast, those of the samples with a TEOS/ZnO ratio of 0.3 were reduced with increasing APTES loading amounts.
Content from these authors
© 2014 The Society of Chemical Engineers, Japan
Previous article Next article
feedback
Top