Online ISSN : 1881-1299
Print ISSN : 0021-9592
Chemical Reaction Engineering
Effects of Acidic Properties of FSM-16 on the Catalytic Conversion of 1,2-Propandiol in the Presence and Absence of Hydrogen
Shigeru SugiyamaYasuhiro OkadaYoshiki YamaneTakuya EhiroKeizo NakagawaMasahiro KatohYuuki KatouShuji AkiharaToshiya YasukawaWataru Ninomiya
Author information

2015 Volume 48 Issue 3 Pages 215-221


We have earlier showed how the catalytic conversion of 1,2-propandiol to propanal using FSM-16 (#16 folded sheets of mesoporous materials) when molded by wet treatment proceeded more favorably than when using FSM-16 molded by pressurization, while no comparison using other typical acidic catalysts and no examination of the acidic properties of FSM-16 was carried out. In the present study, the conversion using FSM-16 molded by wet treatment and pressurization was compared with that obtained by using typical acidic catalysts such as SiW12O40/SiO2 and MCM-41 (#41 of Mobil Composition of Matter) together with amorphous SiO2. Among these catalysts, FSM-16 molded by wet treatment showed the most suitable catalytic activity. In order to examine the effect of the molding procedure for FSM-16 on its structural and acidic properties, FSM-16 molded by both methods was examined using NH3-TPD, in situ FT-IR using NH3 as a probe molecule, and Hammett indicators together with XRD and TEM. According to Zaitsev’s rule, the present conversion should afford acetone rather than propanal, which indicates that it would proceed via hydro cracking. Therefore, the conversion of 1,2-propandiol using FSM-16 was also examined in the presence and absence of hydrogen. Furthermore, hydration reactions of 1- and 2-propanol when using FMS-16 were examined. Based on the results obtained from this investigation, it was concluded that the conversion using a more acidic FSM-16 molded by wet treatment proceeded through dehydration rather than through hydro cracking.

Related papers from these authors
© 2015 The Society of Chemical Engineers, Japan
Previous article Next article