JOURNAL OF CHEMICAL ENGINEERING OF JAPAN
Online ISSN : 1881-1299
Print ISSN : 0021-9592
Physical Properties and Physical Chemistry
Failure Mechanism of True 2D Granular Flows
Cuong T. NguyenHa H. BuiRyoichi Fukagawa
Author information
JOURNAL RESTRICTED ACCESS

2015 Volume 48 Issue 6 Pages 395-402

Details
Abstract

Most previous experimental investigations of two-dimensional (2D) granular column collapses have been conducted using three-dimensional (3D) granular materials in narrow horizontal channels (i.e., quasi-2D condition). Our recent research on 2D granular column collapses by using 2D granular materials (i.e., aluminum rods) has revealed results that differ markedly from those reported in the literature. We assume a 2D column with an initial height of h0 and initial width of d0, a defined as their ratio (a=h0/d0), a final height of h, and maximum run-out distance of d. The experimental data suggest that for the low a regime (a≤0.65) the ratio of the final height to initial height is 1. However, for the high a regime (a≥0.65), the ratio of a to (dd0)/d0, h0/h, or d/d0 is expressed by power-law relations. In particular, the following power-function ratios (h0/h≈1.42a2/3 and d/d0∼4.30a0.72) are proposed for every a≥0.65. In contrast, the ratio (dd0)/d0≈3.25a0.96 only holds for 0.65≤a≤1.5, whereas the ratio (dd0)/d0≈3.80a0.73 holds for a≥1.5. In addition, the influence of ground contact surfaces (hard or soft beds) on the final run-out distance and destruction zone of the granular column under true 2D conditions is investigated.

Content from these authors
© 2015 The Society of Chemical Engineers, Japan
Previous article Next article
feedback
Top