Journal of the Ceramic Society of Japan
Online ISSN : 1882-1022
Print ISSN : 0914-5400
ISSN-L : 0914-5400
Papers
Synthesis and Thermal Analysis of the Strontium and Iron-doped Lanthanum Cobaltite Nano-powder Precursors
Edoardo MAGNONEEnrico TRAVERSAMasaru MIYAYAMA
Author information
JOURNAL FREE ACCESS

2007 Volume 115 Issue 1343 Pages 402-408

Details
Abstract

Powders of perovskite-type oxides, with the general formula La0.8Sr0.2Co1-xFexO3 (0.0<x<1.0), were synthesized by the amorphous citrate method, and chemical reactions in such a synthesis process were systematically investigated via thermal analysis. A series of decompositions of citric acid derivatives occurred at 575-750 K, and the subsequent oxidation of metal-organic amorphous compounds to perovskite-type oxides occurred at 650-850 K. The apparent activation energies for those processes in La0.8Sr0.2Co0.5Fe0.5O3 (x=0.5) were determined to be 101-105 and 45-49 kJ/mol, respectively, using a non-isothermal technique based on the Kissinger approach. The exothermic peaks of those reactions were temperature-dependent on Fe content (x), and they increased with increasing x, reaching a maximum at x=0.7-0.8, and then decreased. An X-ray diffraction analysis of samples heat-treated at 873 K for 2 h revealed that they have a single-phase perovskite structure for all compositions, with their unit cell volume increasing with Fe content (x). The obtained oxides were nanoparticles with diameters of 10 to 20 nm, which increased with Fe content (x). The amorphous citrate route was found to give excellent starting gel precursors for the low-temperature synthesis of La0.8Sr0.2Co1-xFexO3 nanoparticles.

Content from these authors
© 2007 The Ceramic Society of Japan
Previous article Next article
feedback
Top