Journal of the Ceramic Society of Japan
Online ISSN : 1348-6535
Print ISSN : 1882-0743
ISSN-L : 1348-6535
Feature: Functional Ceramics for Energy Conversion and Storage Devices: Full papers
Preparation and electrode properties of novel redoxable nanosheets of Mn–Ni oxide with and without vacancy defects
Shinya SUZUKIMasaru MIYAYAMA
Author information
JOURNAL FREE ACCESS

2017 Volume 125 Issue 4 Pages 293-298

Details
Abstract

As potential cathode materials for thin-film energy storage devices, Mn–Ni oxide nanosheets with the chemical composition H0.46Mn0.81Ni0.19O2 (M81N19) were prepared. Upon restacking in HNO3 aqueous solution and re-exfoliation, the Mn–Ni oxide nanosheets produced the novel H0.58Mn0.81Ni0.13O2 (M81N13) nanosheets with vacancy defects. The chemical composition of the nanosheets was characterized using X-ray absorption spectroscopy, inductively coupled plasma atomic emission spectroscopy, and thermogravimetry. The sizes of the M81N19 and M81N13 nanosheets were compared, and no structural change was observed after Ni dissolution from the nanosheets. The optical properties, the local structure and the electrochemical properties when used as cathodes in Li-ion batteries of the M81N19 and M81N13 nanosheets, were compared.

Content from these authors
© 2017 The Ceramic Society of Japan
Previous article Next article
feedback
Top