Abstract
Effects of NH4Cl addition to perovskite CH3NH3PbI3 precursor solutions on photovoltaic properties were investigated. TiO2/CH3NH3PbI3(Cl)-based photovoltaic devices were fabricated by a spin-coating technique, and the microstructures of the devices were investigated by X-ray diffraction and scanning electron microscopy. Current density–voltage characteristics were improved by a small amount of Cl-doping, which resulted in improvement of the efficiencies of the devices. The structure analysis indicated formation of a homogeneous microstructure by NH4Cl addition to the perovskite phase, and formation of PbI2 was suppressed by the NH4Cl addition.