2018 Volume 126 Issue 10 Pages 860-869
Porous ceramic membranes have received increasing attention for decades. Due to their excellent thermal and chemical properties. Because their pore sizes of as-sintered silicon carbide supports are within the microfiltration range, silicon carbide membranes have been actively investigated by many researchers and industries. For example, silicon carbide supports by themselves (average pore size of 1–10 µm) and microfiltration layer-coated silicon carbide supports (average pore size of 0.1–1 µm) can be easily prepared. However, there is insufficient data concerning the combination of ultrafiltration layer-coated silicon carbide supports (average pore size of below 0.1 µm). Therefore, the authors first prepared typical microfiltration layer-coated silicon carbide supports, and then deposited ultrafiltration layers on them. Furthermore, the authors characterized the membrane properties of the ultrafiltration layer-coated silicon carbide supports. In addition, the possibility of reducing the average pore size of microfiltration layer-coated silicon carbide supports below 0.1 µm was investigated, and improving the water permeability of ultrafiltration layer-coated silicon carbide supports by controlling processing conditions such as the heat-treatment temperature, dip-coating conditions, and composition of the alumina coating slurry was explored.