Journal of the Ceramic Society of Japan
Online ISSN : 1348-6535
Print ISSN : 1882-0743
ISSN-L : 1348-6535
Full papers
Compressive properties of chemical vapor deposited zinc sulfide at high temperatures
Tianbao CHENGYong TAOWeiguo LILiming CHENDaining FANGYazheng YANG
Author information

2019 Volume 127 Issue 8 Pages 527-530


The compressive properties of chemical vapor deposited zinc sulfide are studied up to 1050°C for the first time. The specimen with columns parallel to the compression direction fails by shear firstly and then the part below the slip plane is split. The fracture mode changes from intergranular to transgranular as temperature increases. During compression, the load firstly increases rapidly, then decreases gradually, and lastly drops sharply as displacement increases. The compressive strength decreases as temperature increases. Above 800°C, recrystallization is driven by diffusional processes, which leads to the reduction in compressive strength because of the grown grains and the increase in strain softening as holding time increases. At higher temperatures, diffusional processes are joined by plastic deformation which leads to strain hardening and results in the increase in compressive strength with holding time. This plastic deformation mechanism during recrystallization is observed directly from the load-displacement curve by the high-temperature in-situ compression test for the first time.

Information related to the author
© 2019 The Ceramic Society of Japan
Previous article Next article