Journal of the Ceramic Society of Japan
Online ISSN : 1348-6535
Print ISSN : 1882-0743
ISSN-L : 1348-6535
Full papers
Fabrication of electrolyte-supported solid oxide fuel cells using a tape casting process
Youngjin KWONYoungbae HAN
Author information
JOURNAL OPEN ACCESS

2020 Volume 128 Issue 6 Pages 310-316

Details
Abstract

The high energy density of hydrogen, in addition to its convenience for transportation and infinite resource base, make it a promising energy carrier. Solid oxide fuel cells (SOFCs), in particular—which utilize the oxidation of hydrogen at high temperatures to generate electricity—have been studied widely because of their high efficiency and relatively low cost. However, the lack of a suitable mass production method currently precludes the commercialization of SOFCs. To address this, we herein evaluate tape-casting as a means to reduce the cost of SOFC mass production. A simple de-airing technique is used to simplify the production process and an electrolyte-supported SOFC is produced without employing a buffer or functional layers. The rheological properties of green tape slurries are explored to improve tape completeness and electrolyte performance. Electrolyte conductivity is measured for a fabricated half-cell; the fine structural details are analyzed via scanning electron microscopy. As a result, a unit cell with an open-circuit voltage of 1.05 V and an electric power density of 0.476 W cm−2 at 800 °C was fabricated.

Content from these authors
© 2020 The Ceramic Society of Japan

この記事はクリエイティブ・コモンズ [表示 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by/4.0/deed.ja
Previous article Next article
feedback
Top