Journal of the Ceramic Society of Japan
Online ISSN : 1348-6535
Print ISSN : 1882-0743
ISSN-L : 1348-6535
Special Article-Advancements: The 75th CerSJ Awards for Advancements in Ceramic Science and Technology: Review
(Bi1/2K1/2)TiO3 lead-free ferroelectric ceramics: processing, properties, and compositional modifications
Manabu HAGIWARA
Author information
JOURNAL OPEN ACCESS

2021 Volume 129 Issue 8 Pages 496-503

Details
Abstract

Bismuth potassium titanate (Bi1/2K1/2)TiO3 with an A-site complex perovskite structure is regarded as a promising lead-free ferroelectric/piezoelectric material. Studies on the fundamental properties of (Bi1/2K1/2)TiO3 have, however, been faced with difficulties in fabricating dense and phase-pure (i.e., “high-quality”) bulk ceramics caused by its low melting point and the volatility of Bi and K. This paper reviews our findings on the fabrication process and fundamental properties of such high-quality (Bi1/2K1/2)TiO3 ceramics. After a brief survey on the crystal structure and physical/chemical stability of (Bi1/2K1/2)TiO3, our fabrication process of (Bi1/2K1/2)TiO3 ceramics utilizing the hydrothermal synthesis method is described. Then, the phase transition behavior of (Bi1/2K1/2)TiO3 is discussed based on the electrical and electromechanical responses of the high-quality ceramic samples. The last part of this paper presents two examples of compositional modifications of (Bi1/2K1/2)TiO3 ceramics aiming at developing dielectric and piezoelectric materials for use in capacitors and actuators.

Content from these authors
© 2021 The Ceramic Society of Japan

この記事はクリエイティブ・コモンズ [表示 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by/4.0/deed.ja
Previous article Next article
feedback
Top