2022 Volume 130 Issue Supplement Pages S1-S6
The special oxygen gas burner for the in-flight-melting method can produce glass within one second. The nature and the theoretical bases of this glass were not studied well. Then we observed this glass using a Raman spectra method, a soft X-ray absorption fine structure (XAFS) method, and a scanning electron microscopy - energy dispersive spectroscopy (SEM-EDS) method. We found the specific oxygen chemical states with a large pre-edge structure at around 533∼534 eV in oxygen K-edge X-ray Absorption Near Edge Structure (XANES) spectra which were made in the 1000 kcal/kg-glass specific energy making process and collected at the most upper-stream in the in-flight path. This pre-edge shape of oxygen was much different from the soda-lime glass made with the crucible/tank furnace nor natural silicate glass (tectosilicates, phyllosilicates, nesosilicates). We also found the needle-like fibers with from a few tens of nanometer to sub-micron in diameter and with more than a few tens of micrometer length which were produced in the 1000 or 1200 kcal/kg-glass specific energy making process and collected at the most upper-stream in the in-flight path.