Journal of the Ceramic Society of Japan
Online ISSN : 1348-6535
Print ISSN : 1882-0743
ISSN-L : 1348-6535
Feature: Frontiers in Ceramic Research Based on Materials Science of Crystal Defect Cores: Full papers
Electronic and atomic structures of Shockley-partial dislocations in CdX (X = S, Se and Te)
Sena HoshinoTatsuya YokoiYu OguraKatsuyuki Matsunaga
Author information
JOURNAL OPEN ACCESS
Supplementary material

2023 Volume 131 Issue 10 Pages 613-620

Details
Abstract

II–VI semiconductors, including Cd compounds, become brittle under light illumination. This phenomenon is known as the photoplastic effect (PPE) and is thought to arise from interactions between glide dislocations and photoexcited carriers. The present study investigated atomic structures of 30° Shockley-partial dislocations with and without excess carriers in CdX (X = S, Se and Te), by density-functional-theory (DFT) calculations. It was found that both Cd and anion cores favor unreconstructed atomic structures when excess carriers are absent. In the presence of excess carriers, on the other hand, reconstructed atomic structures were more stable at the anion cores while the unreconstructed ones were still energetically more favorable at the Cd cores. It is thus expected that only the anion cores change their atomic structures by light illumination, which can retard glide-dislocation motion by forming like-atom bonds. Analyses of local densities of states (LDOSs) revealed that the reconstructed Cd and anion cores form shallow and deep defect states within the band gaps, respectively. This determines the possible atomic reconstructions at the dislocation cores in the presence of excess carriers excited by external light.

Content from these authors
© 2023 The Ceramic Society of Japan

この記事はクリエイティブ・コモンズ [表示 4.0 国際]ライセンスの下に提供されています。
https://creativecommons.org/licenses/by/4.0/deed.ja
Previous article Next article
feedback
Top